Real hand honing is back breaking work (trust me here) and no I am not talking about the little dingle ball or flexi-flier hone you did your last job with from Auto-zone. These types of de-glazing tools are not worth mentioning further. A good ridged hone uses the same type of stones and guide shoes as the CV-616 mentioned above. They also include a mechanism for expanding and applying force to the stones on the cylinder walls. These hand hones are several hindered dollars (stones & shoes sold separately) are typically driven by a ½” or ¾” electric drill motor. If you have access to one or want to try it I would suggest locking the block down somehow, and make sure your feet are well planted, as to do this correctly you will need to apply enough force to load down your drill motor. Like most things in life the result you get is directly proportional to the effort you put in. Even though this is a mostly outdated process, there are still many high end race shops that only trust the very final honing step to this process, and only then on their motors for the best of the best.
Cylinder head work:
Cleaning
Degreasing and cleaning of cylinder heads is not much different from the processes and machines used for block cleaning mentioned above.
Valve re-facing & valve seat machining
The term valve grind is in actuality several machine processes. For example if you drop your head off at a machine shop and ask for a valve grind several operations will occur, like cleaning, valve facing, seat cutting, assembly, and if applicable valve clearance adjustment.
Valve facing
The actual grinding or cutting of the valve face is intended to establish a new sealing surface on the valve head that is concentric with the valve stem. There are three basic parts to most valve facing machines, the first part holds and rotates the valve so that the face or sealing surface can be evenly machined. On many machines this part also pivots in relation to the grinding wheel or cutter allowing a change to the face angle machined on the valve. There are two basic types on valve holding methods employed centering and center-less valve holding.
The second part of the machine is either a grinding wheel powered by an electric motor or a carbide/diamond cutter bit; both are used to machine the valve face. Grinding wheel machines require that the grinding stone to be dressed/trued every so often due to the fact that grinding also removes material from the grinding wheel as well as the valve during the facing process. Carbide or diamond bits are simply replaced when required.
Third is a mechanism for facing the tip of the valve stem, this is needed to correct the stem height of the valve when installed in the cylinder head. This is typically a rotating stone and pivoting valve holding mechanism with a micrometer adjustment wheel. This adjustment wheel allows very specific amounts of material to be removed from the valve stem. This is a very important step, when the valve face is cut it moves the valve toward the cam, rocker, or lifter depending on the engine type. Machining the valve seat has the same effect. Therefore if .015 is removed from the valve, and .020 is removed from the seat .035 must be removed from the valve stem tip. In order to maintain the correct hydraulic lifter preload, or to maintain a specified valve lash setting. Failure to do so will result in incorrect valve lash setting, too much or too little lifter preload.
Valve seat machining
Many types of machines are available for machining the valve seats. Powered and un-powered, grinding or cutting, and wet or dry machining. Basically grinding type machines use stones which can be dressed or cut to a specific angle; these stones are then attached to a mandrel with a specific pilot diameter and bearing assembly. A guide arbor is used to accurately machine the valve seat relative to the valve guide. The guide arbor has two ends one which employs either a short or long taper and its median diameter is specified in one thousandth of an inch increment. Specific arbor diameters are selected based on the diameter of the valve guide. The other end of the guide arbor is usually a specific diameter that is proprietary to the type of stone mandrel being used. The stone and mandrel are aligned to the valve seat based on the valve guide centerline. The stone is then rotated usually with an electric motor to machine a fresh angle on the valve seat concentric with the valve guide and at a specific angle. This process can be repeated with as many different angles as required. Most of you have herd of a 3 or 5 angle valve job before, this refers specifically to the number of angles machined on and around the valve seat. Most valve seats use a 45 degree sealing surface; the other two or four angles can be referred to as entry and exit angles. For example a 3 angle valve job with a 45 degree seat would also machine a 30 degree exit angle just below the valve seat on an intake port (this would be considered an entry angle on an exhaust port), and a 60 degree entry angle just above the seat on an intake port (& vice versa). A 5 angle valve job typically adds 15 and 75 degree cuts to the ones mentioned above. This process is intended to create a funnel leading into, past and out from around the valve itself.
Valve seat machining with carbide or diamond cutters is a newer method than grinding, and some do not require a powered drive motor, they are simply turned by hand. These systems use the same types of locating equipment to correctly position the seat, entry or exit angles. An advantage with this type of system is that the carbide or diamond cutters do not wear very quickly, thereby creating a more precise set of angled diameters. Stones wear and require dressing often to maintain the correct angle and cut to cleanly.
Some systems employ a coolant bath during the machining process, this clears removed material, helps dissipate heat during the cutting process, and helps maintain cutter life.
An additional item to the 3 and 5 angle valve jobs mentioned above is actually a process with the valve itself. It is called back-cutting and is done with the valve facing machines mentioned above. This process relieves the un-used portion of the valve face an additional 15 or 20 degrees. A typical exhaust valve when re-faced at 45 degrees could have a .175 wide face angle, the valve seat in the head maybe .100 wide so we need only provide roughly a .110 wide face angle.
A good quality valve job will remove enough material from all the valves to adequately clean them up, and remove the same amount from all intake and exhaust valves. Basically the valve that requires the most amount of material removed is determined first, and then the other valves are machined to match. The same is done with the valve seats, except that they all need to be machined to the same depth. This depth is usually measured from a good reference point like the deck surface. This process ensures that all valves are like distances from other moving things like pistons. If this process is not used you should plan on checking every valve for piston to valve clearance, because they will all be different. Additionally this process allows the machinist to determine the amount of material to remove from the valve stem tip in order to maintain lifter pre-load, or valve lash, as mentioned above.
I will try to write more as time permits. There are many other operations and machine types to address.
For example:
Crank Grinding
Balancing
Connecting rod re-conditioning
Valve seat and guide work
Crack detection
Lifter bore re-alignment
Blue printing
Assembly
I hope some of you find this helpful.
I did not write this article, I found it on DSM Tuners
http://www.dsmtuners.com/forums/arti...explained.html
I give credit to DSM Tuner Wiseman Big Woo for this write up.
I find it a well written, and did receive permission from the author to post it on other forums.
I have added to it, and will add more as time allows me to bring it more into date.
Surfacing-equipment used by Machine Shops
The common ways to surface a head, have changed with how and what engines are built out of
In the day of Cast Iron Heads and cast iron blocks, table stone surfacers were used, think of something about the size of a large end table, with a 14 inch stone spinning in the center of it, the machinist would grab the head and hold it, working the head in a circular motion ageist rotation of the stone. Till it was flat? Not a very good way of surfacing a head. I have still seen this style of surfacer in use in shops to this day.
Next is the "master head surfacer" some are wet, others are Dry, very common in shops, they are cheap to buy and quick to use. Its nothing more than a big belt sander. These machines are not at all accurate, the head is flat, but not square or level, they tend to grind more off the leading edge of the head. On this machine the machinist holds the head and works it across the belt, assuming he has a clue of how that machine cuts. Most do not.
Rotary Broach is another common machine, found as single speed or dual speed, the head is held ridged in a hold down fixture, then a wheel with 10 carbide inserts pass under the head. its a decent machine, but the finish depends allot in how well indexed the carbide inserts are to one another, .001 makes a big difference, it can take hours to set the blades up. Works great on cast iron heads, and some alum, BUT it depends on what kind of Alum the head is made of.
Another machine is the surface grinder, not a bad machine, it keeps the head leveled and indexed, it uses segmented stones. The surface finish is not smooth enough most of the time for MLS gaskets, The finish is dependent on what stones, how well dressed they are, spindle speed and table speed. Still very common in shops
The new boy on the block is a High speed Milling machine, these use a .500 (1/2) inch insert, CBN for cast Iron and CBN for alum. for the most part, as far I as know, have been around about 10 years. smaller shops are slow on getting them due to there cost, But without a doubt give the best surface finish. Some machines, like the comec I use, have variable rate spindle speed and variable rate table feed rates. This will allow for different surface finishes for different gaskets